Fundamental Fallacies of FFR

Coronary Vasomotion Disorders International Study Group (COVADIS): 6th Annual Summit Paris, France September 4, 2019

> David L. Brown, MD, FACC Professor of Medicine @DavidLBrownMD

Disclosures

- None
 - I have no financial or intellectual conflicts of interest regarding the topic of today's discussion

Fractional Flow Reserve

Washington University in St.Louis • School of Medicine

Derivation of FFR

Angiography Bad-- \rightarrow Calibrate FFR to Stress Tests-- \rightarrow Stress Tests Calibrated Against Angiography

ORIGINAL ARTICLE ARCHIVE

Exercise Stress Testing — Correlations among History of Angina, ST-Segment Response and Prevalence of Coronary-Artery Disease in the Coronary Artery Surgery Study (CASS)

Exercise echocardiography as a screening test for coronary artery disease and correlation with coronary arteriography

Myocardial Imaging with Thallium-201 at Rest and during Exercise

Comparison with Coronary Arteriography and Resting and Stress Electrocardiography

Pijls NH et al. N Engl J Med 1996;334:1703-1708.

🐷 Washington University in St.Louis • School of Medicine

2019 ESC Chronic Coronary Syndromes Guidelines

Washington University in St.Louis • School of Medicine

Four Fundamental Fallacies of FFR

- 1. Ischemia caused by an obstructive epicardial coronary stenosis is on the direct pathway to death/MI and should be a target of revascularization
- 2. The microvasculature is irrelevant in the assessment of coronary physiology and pathophysiology
- 3. FFR-guided PCI improves outcomes through targeted lesion selection (FAME)
- 4. FFR-guided PCI improves outcomes compared to OMT (FAME 2)

Fallacy 1: Ischemia caused by an obstructive epicardial coronary stenosis is on the direct pathway to death/MI and should be a target of revascularization

The Foundational Premise of FFR

MINI-FOCUS ISSUE: OPTICAL COHERENCE TOMOGRAPHY

State-of-the-Art Paper

Functional Measurement of Coronary Stenosis

Nico H. J. Pijls, MD, PHD, Jan-Willem E. M. Sels, MD

Eindhoven, the Netherlands

- "In coronary artery disease, the most important factor related to outcome is the presence and extent of inducible ischemia."
- "Functionally significant stenoses should be revascularized, if technically possible."

Association of Ischemia with Cardiac Death Association ≠ Causation

Hachamovitch et al. Circulation. 1998;97:535–543

Washington University in St.Louis • School of Medicine

Ischemia vs. Atherosclerotic Burden in COURAGE

Ischemic burden: OR 1.01 (0.98-1.03) P=0.54

Atherosclerotic burden: OR 1.05 (1.02–1.08) P=0.002

J Am Coll Cardiol Intv 2014;7:195-201

Washington University in St.Louis • School of Medicine

PCI Does Not Reduce Death or MI in Patients with Ischemia

Death

Stergiopoulos et al. JAMA Intern Med. 2014;174(2):232-240

Washington University in St.Louis • School of Medicine

Fallacy 2: The microvasculature is irrelevant in the assessment of coronary physiology and pathophysiology

Washington University in St.Louis • School of Medicine

Focus on FFR Obscures the Critical Role of the Microvasculature

CFR=Coronary flow reserve

IMR=index of microcirculatory resistance= Pd x Tmn

Washington University in St.Louis • School of Medicine

JACC 2016; 67:1170-2

Impact of Coronary Microvascular Dysfunction on FFR-Worst Case Scenario

For a given epicardial disease severity, FFR increases with increasing HMR (MVD)

Tim P van de Hoef et al. Heart 2014;100:951-959

Washington University in St.Louis • School of Medicine

HMR =

pressure/

mean distal coronary

maximum hyperemia

FFR May Miss Diffuse Atherosclerosis

	All Patients (N = 77)	CMD (Abnormal HMR) (n = 30)	No CMD (Normal HMR) (n = 47)	p Value					
Age, yrs	56 ± 10	60 ± 9	53 ± 10	0.00					
Male	39 (51)	15 (50)	24 (51)	0.99					
Hypertension	55 (71)	23 (77)	32 (68)	0.45					
Diabetes mellitus	18 (23)	12 (40)	6 (13)	0.01					
Dyslipidemia	59 (77)	22 (73)	37 (79)	0.59					
Total cholesterol	163 ± 36	161 ± 33	164 ± 37	0.85					
HDL cholesterol	44 ± 12	44 ± 11	44 ± 13	0.96					
LDL cholesterol	95 ± 32	92 ± 35	98 ± 30	0.42					
HMR	$\textbf{1.9} \pm \textbf{0.7}$	$\textbf{2.62} \pm \textbf{0.49}$	1.47 ± 0.32	<0.00					
FFR	$\textbf{0.93} \pm \textbf{0.06}$	0.94 ± 0.05	0.92 ± 0.07	0.13					
EEM area, mm ²	15.7 ± 4.3	$\textbf{16.2} \pm \textbf{4.4}$	15.4 ± 4.3	0.55					
Lumen area, mm ²	$\textbf{9.7} \pm \textbf{3.2}$	9.5 ± 3.2	$\textbf{9.8}\pm\textbf{3.1}$	0.75					
MLA, mm ²	$\textbf{5.1} \pm \textbf{2.4}$	$\textbf{4.7} \pm \textbf{1.8}$	$\textbf{5.3} \pm \textbf{2.8}$	0.76					
Plaque area, mm ²	$\textbf{6.9} \pm \textbf{7.5}$	8.3 ± 10.7	$\textbf{6.0} \pm \textbf{4.3}$	0.14					
Minimum PB%	$\textbf{18.8} \pm \textbf{9.8}$	$\textbf{21.9} \pm \textbf{9.8}$	$\textbf{16.8} \pm \textbf{9.4}$	0.02					
Median PB%	$\textbf{37} \pm \textbf{15.3}$	41.3 ± 13.0	$\textbf{34.3} \pm \textbf{16.1}$	0.04					
Maximum PB%	$\textbf{61.3} \pm \textbf{18.1}$	$\textbf{67.4} \pm \textbf{15.3}$	$\textbf{57.5} \pm \textbf{18.9}$	0.03					
Percentage of IVUS	41 ± 35	$\textbf{50.1} \pm \textbf{34.3}$	$\textbf{34.2} \pm \textbf{33.5}$	0.03					

JACC: Cardiovascular Interventions 2019; 12: 1516-20

Washington University in St.Louis • School of Medicine

Fallacy 3: FFR-guided PCI improves outcomes through targeted lesion selection

Washington University in St.Louis • School of Medicine

FAME Trial

In **37%** of lesions, the FFR was greater than 0.80 and PCI was not performed.

AngioFFRRelative RiskDeath or MI-no (%)55(11.1)37(7.3)0.66 (0.44-0.98)

N Engl J Med 2009; 360:213-224

Washington University in St.Louis • School of Medicine

Critical Unanswered Question

Was the reduction in death/MI seen with FFRguided PCI the result of avoidance of hemodynamically insignificant lesions or simply the result of putting in 37% fewer stents?

A BARI 2D Simulation: Random(as opposed to FFRguided) Selection of Patients for Deferral of PCI

Washington University in St. Louis • School of Medicine

Fallacy 4: FFR-guided PCI improves outcomes compared to OMT

Washington University in St.Louis • School of Medicine

FAME 2

ORIGINAL ARTICLE

Fractional Flow Reserve–Guided PCI versus Medical Therapy in Stable Coronary Disease

			Death (%)			MI (%)		
F/U		Ν	PCI	MT	Р	PCI	MT	Р
213 days	NEJM	888	0.2	0.7	0.31	3.4	3.2	0.89
3 years	Circ	888	2.7	3.6	0.43	6.3	7.7	0.41
5 years	NEJM	784	5.1	5.2	0.98 (0.55-1.75)	8.1	12	0.66(0.43-1.00)

N Engl J Med 2012; 367:991-1001

Washington University in St.Louis • School of Medicine

What About the Urgent Revascularizations? 'Faith Healing' and 'Subtraction Anxiety' in FAME 2

N Engl J Med 2012; 367:991-1001

Circulation: Cardiovascular Quality and Outcomes. 2018;11:e004665

Washington University in St.Louis • School of Medicine

Impact of Baseline FFR on Angina Relief in ORBITA

Circulation. 2018;138:1780–1792

Washington University in St.Louis • School of Medicine

Conclusions

- FFR, in isolation, is of no value in the evaluation of patients with suspected ischemia
- The ESC guidelines continue to promote an outdated paradigm for evaluation of suspected ischemia
- Ideally, the entire coronary vasculature should be assessed for a comprehensive understanding of the pathophysiology and preferred treatment of individual patients

Thank You!

Washington University in St. Louis • School of Medicine